
C++ on the Web:
 Run your big 3D game in
the browser!

Quo Vadis 2013

Andre “Floh” Weissflog
Head of Development, Berlin
Bigpoint GmbH

Outline

2

WHY?

• Why now?

• Why C++?

• Why the web?

WHAT?

• emscripten

• flascc

• Google Native Client

HOW?

• Build system

• Workflow & Debugging

• Specific problems and solutions

Wrap-up & Questions

Why Now?

3

New technologies have become mature which cross-compile C++ code to
sandboxed runtime environments:

Adobe’s flascc

Mozilla’s emscripten

Google’s Native Client

C++

Why C++?

4

C++ is everywhere!

Why C++ continued…

5

• Support many target platforms from a single code base

• Nearly all professional game-dev middleware written in
C/C++

• Good for large code-bases (static type system, compiled
language, rock-solid compilers and debuggers)

• Cross-compiled C++ code is actually faster then typical
handwritten Javascript or ActionScript

Why OpenGL

6

GL is (nearly)
everywhere!

Why develop for the Web?

7

It’s the most friction-less platform for users AND developers:

Users:

• True “click-and-play”: No downloads, no installations, no patching.

• No security concerns (ideally): untrusted code runs sandboxed.

A truly open distribution platform for developers:

• no “walled gardens”

• no arbitrary certification process

• free choice of payment, hosting, “store-front” providers

No Vendor or Platform Lock-In !!

8

90% of your C++ code base will be platform-agnostic*
 *(if done right)

Switch your target platform with a simple compile-switch!

• Consoles dying? Switch to PC!
• PC dying? Switch to mobile!
• Flash dying? Switch to HTML5!

You don’t need to “invest big” into the uncertain future of
a specific platform, C++ and OpenGL got your back.

Interlude: LLVM

9

LLVM is the magic sauce which makes C++ on the Web possible.

A highly modular and flexible compiler infrastructure.

Started in 2000 as OpenSource project.

1. Language front-ends compile source code to “LLVM bitcode”.
2. Generic optimizer passes work on bitcode.
3. Back-ends translate bitcode to “anything” (usually CPU native

instructions, but also VM byte code or different languages).

C/C++

ObjectiveC

GLSL

…

LLVM bitcode

x86

x64

ARM

AVM2

JS

Optimizer
Passes

Google Native Client (NaCl)

10

• Project started in 2008.

• Executes pre-compiled machine code safely in a sandbox.

• Integrated into web page with the object tag (similar to Flash SWFs).

• Currently CPU-specific “executables”, pNaCl aims to solve this problem.

• Only implemented in Google Chrome.

• Currently only enabled for Chrome Web Store apps.

• Not much hope that other browsers will ever adopt NaCl.

FOR: solid runtime and tools, full CPU performance, rich API and Middleware
support, full pthreads implementation

AGAINST: only on Chrome and Chrome Web Store

Adobe flascc

11

• Project started in 2008 as experimental “Adobe Alchemy”.

• Cross-compiles C++ code to AVM bytecode.

• Requires Flash plugin.

• Proprietary 3D API (Stage3D)

• Very slow translation of LLVM bitcode to AVM2 :(

FOR: 3D on IE, full access to Flash runtime environment

AGAINST: requires Flash plugin, extremely slow compilation process

Mozilla emscripten

12

• Project started in 2010.

• Cross-compiles C++ code to low level Javascript.

• Maps OpenGL to WebGL for 3D rendering.

• Rich support for standard APIs (SDL, OpenGL/ES2, EGL, GLUT, …).

• Custom WebWorker API instead of pthreads (more on that later).

• Compiler tools fast enough for large code bases.

• asm.js code generation mode (more on that later)

FOR: doesn’t require plugins, runs in all browsers (except WebGL), modern JS
engines “fast enough”

AGAINST: IE vs. WebGL, threaded code can’t simply be cross-compiled

emscripten FTW!

13

Will concentrate on emscripten from here on.

Why? (all IMHO of course):

• Everything about emscripten is completely open.
• Biggest “near future potential”.
• Extremely responsive and fast development team.
• Seamless integration into web page.
• It’s “fast enough” already, and getting still faster.
• asm.js!

BUT: all 3 technologies are very similar to port to.

Why is emscripten-generated JS fast?

14

emscripten is NOT a source-level translator from C++ to high-level JS!

C++ LLVM

Instead it translates LLVM bit code to Javascript which looks like “high-level assembly”:

.bc .js emscripten

emscripten uses a big TypedArray as C/C++ memory heap.

RESULT:
• no objects, no properties
• no dynamic typing

• just functions, numbers and local variables
• no garbage collection!
• LLVM optimization passes!

Emscripten generated JS (minified)

What’s up with asm.js?

15

From the spec: a strict subset of JavaScript that can be used as a low-
level, efficient target language for compilers.

Formalizes the subset of JS generated by emscripten and similar

JavaScript generators, BUT is still standard Javascript.

How fast?
 Within 2x of native code (gcc –O2), and

 performance is much more consistent.

Good performance in standard JS engines, big performance boost in
asm.js aware JS engines (e.g. in Firefox Nightly).

If your game is GPU bound, CPU performance isn’t really that important.

In our experiments, “CPU speed” is fast enough even without asm.js, it’s WebGL
and the GPU that really matters.

But no matter whether asm.js is specifically optimized by an JS engine:

Platform-dependent components of a 3D Game Engine

16

Build System

Memory Management

Asset Loading

Input

3D Rendering

Audio

Networking

Threading

Timing

Game Loop

Let’s look at those one by one (in no particular order)

Interlude: CMake

17

Cmake is a meta-build-system: create build files for many platforms and IDEs
from a single set of project description files (CMakeLists.txt)

CMakeLists.txt

make
Setting up GCC-style cross-
compiling is really trivial with
CMake. NaCl

emscripten’s Build System

18

What emscripten provides:
• gcc compatible drop-in tools (emcc, em++, emar, …)
• system headers
• system libs
• hello_world.cpp, and lots of other samples

What you provide:
• Makefiles which invoke emcc instead of gcc (easily generated with a “cmake

toolchain file”)

Only 3 things are important in a cross-compiling scenario:
• The right compiler is called.
• The right headers are included.
• The right libs are linked.

Make sure that the cross-compiling SDK’s compiler, headers and libs are
used, not the host system’s native files!

emscripten is very fool-proof about using the right headers and linking against the right libs.

Workflow & Debugging Tips

19

Make sure your app compiles and runs also as normal OSX or Windows app!

Do your normal development work and debugging on this native desktop
version inside XCode or Visual Studio, this gives you the best turnaround
times and debugging experience.

Only fallback to “low level debugging” for bugs in emscripten-specific code.

Having said that, low-level debugging of emscripten-generated JS isn’t
that bad:

function __ZNK9Graphics215CameraComponent14GetViewFrustumEv($this)
{
 var label = 0;
 var $1;
 $1=$this;
 var $2=$1;
 var $3=(($2+12)|0);
 var $4=__ZNK6Shared14CameraSettings14GetViewFrustumEv($3);
 return $4;
}

Inject log messages directly into JS without recompiling, make use of the
browser’s Javascript debugger and profiler, etc…

emscripten Memory Management

20

emscripten uses a single, big TypedArray with multiple views as heap for the C/C++ code:

var buffer = new ArrayBuffer(TOTAL_MEMORY);
HEAP8 = new Int8Array(buffer);
HEAP16 = new Int16Array(buffer);
HEAP32 = new Int32Array(buffer);
HEAPU8 = new Uint8Array(buffer);
HEAPU16 = new Uint16Array(buffer);
HEAPU32 = new Uint32Array(buffer);
HEAPF32 = new Float32Array(buffer);
HEAPF64 = new Float64Array(buffer);

Pointers are actually indices into this typed array

emscripten links against dlmalloc.c to for malloc()/free()

From a C/C++ programmer’s perspective, dynamic memory management
isn’t different from other platforms. Just don’t spam malloc()/free() and be
aware of memory fragmentation.

Input Handling and Timing

21

emscripten offers mouse / keyboard input support through the GLUT,
GLFW and SDL library wrappers.

If your code already sits on top of GLUT, GLFW or SDL, you don’t need to do
anything.

Otherwise it’s trivial to add minimal wrapper code interfacing those APIs just
for input.

Nebula3 currently uses GLUT code to setup the display and handle input, the
emscripten team recommends to use SDL though, since it is used more
broadly.

For timing, emscripten has a simple function emscripten_get_now() which
returns a float number in milliseconds.

EASY!

Break up your Game Loop!

22

Your Javascript code runs inside a per-frame callback during the “browser loop”,
and there’s no way around it.

Spending too much time in your code will affect the whole browser (sluggish
behaviour, freezes, eventually the browser will kill your page).

YOU CANNOT OWN THE GAME LOOP!

NEVER BLOCK FOR MORE THEN A FEW DOZEN
MILLISECONDS

You may have to rethink your high-level application
model to solve this problem. Always return after XX
milliseconds to the browser, and split expensive work
into pieces, and/or move to WebWorker threads!

The Flash guys had to solve the same problem many years ago, google for “Elastic
Racetrack” and “Marshaled Slices”.

Break up your Game Loop, Nebula3 style

23

Nebula3 uses a “PhasedApplication” model, app goes through states/phases which tick
themselves forward when phase is finished.

Individual per-frame-callbacks should return within 16 or 32 milliseconds, and never block.

Expensive (init) work is distributed across several frames.

OnInitial

OnPreloading

OnOpening

OnRunning

OnClosing

OnQuit

OnFrame
(dispatch)

Browser Browser

<16ms or <32ms

Multithreading / Parallelism

24

This can be tricky since emscripten doesn’t support pthreads.

OMG WHY?
...because JavaScript.

JS doesn’t allow shared state between “threads”.

WebWorkers to the rescue!

WebWorkers implement a simple, high level parallel-task system.

Request

Reponse

Worker Thread Browser Thread

Good thing about WebWorkers: it’s really hard to shoot yourself in the foot.

Because: no mutexes, no crit-sects, no cond-vars, no atomic-ops…

Multithreading porting strategies

25

So what about your existing multithreading code?

Option 1: slice it into frames and call an UpdateThread() method
from main loop:

Before After

No multithreading, everything runs on the browser thread now 

But useful to get your code up and running quickly.

Only option if your code absolutely relies on shared state.

Multithreading porting strategies

26

Option 2: move to web workers (preferred)

Before After

 Watch the overhead of getting data in/out of web worker!

Worker code must reside in its own .js, and has its own address
space, so don’t pass pointers around.

Workers have limited runtime
environment (no DOM access, no
GL, …

Asset Loading

27

There’s The Easy Way, and The Right Way to load assets.

But (big BUT):

1. Preload all files from HTTP server and map them into “virtual file
system” in RAM.

2. Use fopen / fread / fclose to read data synchronously.

emscripten makes this approach extremely easy, and you don’t need
to change your existing loader code.

The Easy Way

Big monolithic asset download required before your app can start.
Not very user friendly, and may be impossible with big games.

Asset Loading

28

Implement “HTTP file system” which asynchronously downloads
files from web server on demand.

The Right Way

Engine must be able to handle asynchronous loading for all file
types: up to several seconds until data is available.

Can’t simply block until data is downloaded! The whole browser will
block too and eventually kill the page.

Just think of the web as an extremely slow and unreliable HDD
or DVD.

emscripten has several C wrapper functions to start downloading
data from an URL, with callbacks when succeeded / failed, uses
XMLHttpRequest inside.

Networking / Multiplayer

29

This is the bleeding edge

Not much personal experience with this yet, but some pointers:

WebSockets are widely available, but sorta suck (esp. for action
games).

WebRTC data channels offer UDP- and TCP-based, peer-to-peer
messaging. Much better but not yet standardized across browsers.

emscripten wraps both WebSockets and WebRTC, and has a working
ENET port (http://enet.bespin.org/).

http://enet.bespin.org/
http://enet.bespin.org/

Audio

30

This is another area full of pain:

<audio> tag vs WebAudio

The <audio> tag is fundamentally broken and hopefully dies a painful death:
• Browsers either support MP3 or Ogg Vorbis, but not both
• Designed for simple web pages, but not demanding 3D games.

WebAudio is (hopefully) the future, but currently only supported in Chrome
and Firefox Nightly.

Web Apps will have to rely on ugly hacks and workarounds for the
foreseeable future.

emscripten has SDL Audio (based on <audio> tag), and OpenAL (based on
WebAudio).

3D Rendering

31

OpenGL ES2 support is really good in emscripten. If
you code is already running on mobile platforms,
you’re ready to go.

GL context setup via GLUT, SDL, GLFW or EGL, your choice.

DXT texture format transparently exposed through extension, but
beware of PowerVR on mobile platforms!

WebGL has higher function call overhead than native OpenGL, so
reducing number of GL calls is important.

In Firefox and Chrome on Windows, WebGL is actually translated to
Direct3D9 (surprisingly fast!).

Wrap-up

32

• You can run big C/C++ code bases (“a million lines of code”) in the browser.

• Javascript is already fast enough for many types of games.

• Massive performance improvements happening right now (better code
generation, JS engines better at running generated code, asm.js…)

• Development moves fast in the browser world, but standardization is slow.

• Audio and Networking in the browser is still a pain.

• WebGL is here to stay.

Tech Blog: http://flohofwoe.blogspot.com
Demos: http://www.flohofwoe.net/demos.html

http://flohofwoe.blogspot.com/
http://www.flohofwoe.net/demos.html

Questions?

Thanks!

33

Find us on

Bigpoint GmbH
Andre Weissflog

Head of Development, Berlin

Drehbahn 47-48
20354 Hamburg

Germany

Tel +49 40.88 14 13 - 0
Fax +49 40.88 14 13 - 11

info@bigpoint.net
www.bigpoint.net

34

http://www.facebook.com/BigpointGames
http://www.youtube.com/user/bigpointdotcom
http://twitter.com/bigpoint_games

