Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Aujourd’hui — 10 février 2026hackaday.com

A Working Intercom From Antique Telephones

10 février 2026 à 00:00

Although it can be hard to imagine in today’s semiconductor-powered, digital world, there was electrical technology around before the widespread adoption of the transistor in the latter half of the 1900s that could do more than provide lighting. People figured out clever ways to send information around analog systems, whether that was a telegraph or a telephone. These systems are almost completely obsolete these days thanks to digital technology, leaving a large number of rotary phones and other communications systems relegated to the dustbin of history. [Attoparsec] brought a few of these old machines back to life anyway, setting up a local intercom system with technology faithful to this pre-digital era.

These phones date well before the rotary phone that some of us may be familiar with, to a time where landline phones had batteries installed in them to provide current to the analog voice circuit. A transformer isolated the DC out of the line and amplified the voice signal. A generator was included in parallel which, when operated by hand, could ring the other phones on the line. The challenge to this build was keeping everything period-appropriate, with a few compromises made for the batteries which are D-cell batteries with a recreation case. [Attoparsec] even found cloth wiring meant for guitars to keep the insides looking like they’re still 100 years old. Beyond that, a few plastic parts needed to be fabricated to make sure the circuit was working properly, but for a relatively simple machine the repairs were relatively straightforward.

The other key to getting an intercom set up in a house is exterior to the phones themselves. There needs to be some sort of wiring connecting the phones, and [Attoparsec] had a number of existing phone wiring options already available in his house. He only needed to run a few extra wires to get the phones located in his preferred spots. After everything is hooked up, the phones work just as they would have when they were new, although their actual utility is limited by the availability of things like smartphones. But, if you have enough of these antiques, you can always build your own analog phone network from the ground up to support them all.

Why Haven’t Quantum Computers Factored 21 Yet?

Par : Maya Posch
10 février 2026 à 03:00

If you are to believe the glossy marketing campaigns about ‘quantum computing’, then we are on the cusp of a computing revolution, yet back in the real world things look a lot less dire. At least if you’re worried about quantum computers (QCs) breaking every single conventional encryption algorithm in use today, because at this point they cannot even factor 21 yet without cheating.

In the article by [Craig Gidney] the basic problem is explained, which comes down to simple exponentials. Specifically the number of quantum gates required to perform factoring increases exponentially, allowing QCs to factor 15 in 2001 with a total of 21 two-qubit entangling gates. Extrapolating from the used circuit, factoring 21 would require 2,405 gates, or 115 times more.

Explained in the article is that this is due to how Shor’s algorithm works, along with the overhead of quantum error correction. Obviously this puts a bit of a damper on the concept of an imminent post-quantum cryptography world, with a recent paper by [Dennish Willsch] et al. laying out the issues that both analog QCs (e.g. D-Wave) and digital QCs will have to solve before they can effectively perform factorization. Issues such as a digital QC needing several millions of physical qubits to factor 2048-bit RSA integers.

❌
❌